Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB.
نویسندگان
چکیده
The type III effector protein encoded by avirulence gene B (AvrB) is delivered into plant cells by pathogenic strains of Pseudomonas syringae. There, it localizes to the plasma membrane and triggers immunity mediated by the Arabidopsis coiled-coil (CC)-nucleotide binding (NB)-leucine-rich repeat (LRR) disease resistance protein RPM1. The sequence unrelated type III effector avirulence protein encoded by avirulence gene Rpm1 (AvrRpm1) also activates RPM1. AvrB contributes to virulence after delivery from P. syringae in leaves of susceptible soybean plants, and AvrRpm1 does the same in Arabidopsis rpm1 plants. Conditional overexpression of AvrB in rpm1 plants results in leaf chlorosis. In a genetic screen for mutants that lack AvrB-dependent chlorosis in an rpm1 background, we isolated TAO1 (target of AvrB operation), which encodes a Toll-IL-1 receptor (TIR)-NB-LRR disease resistance protein. In rpm1 plants, TAO1 function results in the expression of the pathogenesis-related protein 1 (PR-1) gene, suggestive of a defense response. In RPM1 plants, TAO1 contributes to disease resistance in response to Pto (P. syringae pathovars tomato) DC3000(avrB), but not against Pto DC3000(avrRpm1). The tao1-5 mutant allele, a stop mutation in the LRR domain of TAO1, posttranscriptionally suppresses RPM1 accumulation. These data provide evidence of genetically separable disease resistance responses to AvrB and AvrRpm1 in Arabidopsis. AvrB activates both RPM1, a CC-NB-LRR protein, and TAO1, a TIR-NB-LRR protein. These NB-LRR proteins then act additively to generate a full disease resistance response to P. syringae expressing this type III effector.
منابع مشابه
Evolutionary relationship of disease resistance genes in soybean and Arabidopsis specific for the Pseudomonas syringae effectors AvrB and AvrRpm1.
In Arabidopsis (Arabidopsis thaliana), the Pseudomonas syringae effector proteins AvrB and AvrRpm1 are both detected by the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) disease resistance (R) protein. By contrast, soybean (Glycine max) can distinguish between these effectors, with AvrB and AvrRpm1 being detected by the Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r R proteins, respecti...
متن کاملNovel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity
Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. Durin...
متن کاملA protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis.
Using a proteomics approach, a PP2C-type phosphatase (renamed PIA1, for PP2C induced by AvrRpm1) was identified that accumulates following infection by Pseudomonas syringae expressing the type III effector AvrRpm1, and subsequent activation of the corresponding plant NB-LRR disease resistance protein RPM1. No accumulation of PIA1 protein was seen following infection with P. syringae expressing ...
متن کاملSpecific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants.
The Arabidopsis NB-LRR immune receptor RPM1 recognizes the Pseudomonas syringae type III effectors AvrB or AvrRpm1 to mount an immune response. Although neither effector is itself a kinase, AvrRpm1 and AvrB are known to target Arabidopsis RIN4, a negative regulator of basal plant defense, for phosphorylation. We show that RIN4 phosphorylation activates RPM1. RIN4(142-176) is necessary and, with...
متن کاملResistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1.
The Pseudomonas syringae-Arabidopsis (Arabidopsis thaliana) interaction is an extensively studied plant-pathogen system. Arabidopsis possesses approximately 150 putative resistance genes encoding nucleotide binding site (NBS) and leucine-rich repeat (LRR) domain-containing proteins. The majority of these belong to the Toll/Interleukin-1 receptor (TIR)-NBS-LRR (TNL) class. Comparative studies wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 17 شماره
صفحات -
تاریخ انتشار 2008